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1. Introduction

While cables are employed in diverse engineering applications including suspension bridges [1],
elevators [2], power transmission lines [3], and marine towing and mooring systems [4], they are
subject to vibration due to their high flexibility and low intrinsic damping. Irvine and Caughey [5]
and Triantafyllou [6] studied the dynamics of suspended cables with horizontal and inclined
supports. Sergev and Iwan [7] and Cheng and Perkins [8] analyzed the vibration of cables with
attached masses. Simpson [9], Triantafyllou [10], and Perkins and Mote [11] studied the in-plane
and three-dimensional vibration of travelling cables. Wickert and Mote [12] and Zhu and Mote
[13] analyzed the dynamic response of travelling cables with attached payloads. While the bending
stiffness of cables is neglected in most studies, it was included in the models in Refs. [14,15] to
avoid the singular behaviors associated with vanishing cable tension. Bending stiffness was also
accounted for when cables are subjected to external moments [3,16] or when their local bending
stresses need to be determined [17].
Vibration of elevator cables has been studied by several researchers [2,18–21]. Chi and Shu [2]

calculated the natural frequencies associated with the longitudinal vibration of a stationary cable
and car system. Roberts [18] used lumped mass approximations to model the longitudinal
dynamics of hoist and compensation cables in high-rise elevators. Yamamoto et al. [19] analyzed
the free and forced lateral vibration of a stationary string with slowly, linearly varying length.
Terumichi et al. [20] examined the lateral vibration of a travelling string with slowly, linearly
varying length and a mass-spring termination. Zhu and Ni [21] analyzed the dynamic stability of
travelling media with variable length. The vibratory energy of the media was shown to decrease
and increase in general during extension and retraction, respectively.
Due to its small bending stiffness relative to the tension, the moving hoist cable was modelled as

a travelling string in Ref. [21]. By including the bending stiffness in the models for the stationary
and moving hoist cables with different boundary conditions, the effects of bending stiffness and
boundary conditions on their dynamic characteristics are investigated here. Convergence of the
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models is examined. The optimal stiffness and damping coefficient of the suspension of the car
against its guide rails are identified for the moving cable.

2. Stationary cable models

2.1. Basic equations

We consider six models of the stationary hoist cable to evaluate the effects of bending stiffness
and boundary conditions on its dynamic characteristics. Since the vertical cable has no sag, it is
modelled as a taut string and a tensioned beam. Shown in Fig. 1 are the beam and string models of
the cable with the suspension of the car against its guide rails assumed to be rigid. Shown in Fig. 2
are the beam and string models of the cable with the suspension of the car against the guide rails
modelled by a resultant stiffness ke and damping coefficient ce: In all the cases the mass of the car
is denoted by me:While the car can have finite dimensions in Fig. 1, it is modelled as a point mass
in Fig. 2. When the cable is modelled as a tensioned beam, as shown in Figs. 1(a) and (b), and 2(a)
and (b), its free lateral vibration in the xy plane is governed by

ryttðx; tÞ � ½PðxÞyxðx; tÞ�x þ EIyxxxxðx; tÞ ¼ 0; 0oxol; ð1Þ

where the subscript denotes partial differentiation, yðx; tÞ is the lateral displacement of the cable
particle at position x at time t; l is the length of the cable, r is the mass per unit length, EI is the
bending stiffness, and PðxÞ is the tension at position x given by

PðxÞ ¼ ½me þ rðl � xÞ�g; ð2Þ

in which g is the acceleration due to gravity. The boundary conditions of the cable with fixed ends,
as shown in Fig. 1(a), are

yð0; tÞ ¼ yxð0; tÞ ¼ 0; yðl; tÞ ¼ yxðl; tÞ ¼ 0: ð3Þ
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Fig. 1. Schematic of the stationary hoist cable with the suspension of the car against its guide rails assumed to be rigid:

(a) fixed–fixed beam model, (b) pinned–pinned beam model, and (c) string model.
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The boundary conditions of the cable with pinned ends, as shown in Fig. 1(b), are

yð0; tÞ ¼ yxxð0; tÞ ¼ 0; yðl; tÞ ¼ yxxðl; tÞ ¼ 0: ð4Þ

For the cable models in Fig. 2(a) and (b), the boundary conditions at x ¼ 0 are the same as those
in Eqs. (3) and (4), respectively, and the boundary conditions at x ¼ l are

yxxðl; tÞ ¼ 0; EIyxxxðl; tÞ ¼ PðlÞyxðl; tÞ þ meyttðl; tÞ þ ceytðl; tÞ þ keyðl; tÞ: ð5Þ

Note that the bending moment at x ¼ l vanishes in the first equation in Eq. (5) because the rotary
inertia of the car is not considered. The governing equation for the models in Figs. 1(c) and 2(c) is
given by Eq. (1) with EI ¼ 0; and the boundary condition at x ¼ 0 is yð0; tÞ ¼ 0: The boundary
condition at x ¼ l for the model in Fig. 1(c) is yðl; tÞ ¼ 0 and the boundary condition at x ¼ l for
the model in Fig. 2(c) is given by the second equation in Eq. (5) with EI ¼ 0: Due to vanishing
slope of the cable at the fixed ends in Figs. 1(a) and 2(a), the models in Figs. 1(c) and 2(c) cannot
be obtained from the models in Figs. 1(a) and 2(a), respectively, by setting EI ¼ 0: In addition to
providing a nominal tension meg; the mass of the car results in an inertial force in the second
equation in Eq. (5) for the models in Fig. 2.
Galerkin’s method and the assumed modes method are used to discretize the governing partial

differential equations for the models in Figs. 1 and 2, respectively. The solution of Eq. (1) is
assumed in the form

yðx; tÞ ¼
Xn

j¼1

qjðtÞfjðxÞ; ð6Þ

where fjðxÞ are the trial functions, qjðtÞ are the generalized coordinates, and n is the number of
included modes. The trial functions for the models in Fig. 1 satisfy all the boundary conditions
and those for the models in Fig. 2 satisfy all the boundary conditions except the force boundary
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Fig. 2. Schematic of the stationary hoist cable where the car is modelled as a point mass me and its suspension against

the guide rails has a resultant stiffness ke and damping coefficient ce: (a) beam model with a fixed end at x ¼ 0; (b) beam
model with a pinned end at x ¼ 0; and (c) string model.
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condition in Eq. (5). Substituting Eq. (6) into Eq. (1) and the second equation in Eq. (5),
multiplying the governing equation by fiðxÞ (i ¼ 1; 2;y; n), integrating it from x ¼ 0 to l; and
using the resulting boundary condition yields the discretized equations for the models in Fig. 2(a)
and (b):

M.qðtÞ þ C’qðtÞ þ KqðtÞ ¼ 0; ð7Þ

where q ¼ ½q1; q2;y; qn�T is the vector of generalized coordinates and M, K, and C are the
symmetric mass, stiffness, and damping matrices, respectively, with entries

Mij ¼
Z l

0

rfiðxÞfjðxÞ dx þ mefiðlÞfjðlÞ; ð8Þ

Kij ¼
Z l

0

PðxÞf0
iðxÞf

0
jðxÞ dx þ

Z l

0

EIf00
i ðxÞf

00
j ðxÞ dx þ kefiðlÞfjðlÞ; ð9Þ

Cij ¼ cefiðlÞfjðlÞ; ð10Þ

in which the prime denotes differentiation with respect to x: The discretized equations for the
model in Fig. 2(c) are given by Eqs. (7)–(10) with EI ¼ 0 in Eq. (9). The discretized equations for
the models in Fig. 1(a) and (b) are given by Eqs. (7)–(10) with me ¼ 0 in Eq. (8) and ke ¼ ce ¼ 0 in
Eqs. (9) and (10); the discretized equations for the model in Fig. 1(c) are given by Eqs. (7)–(10)
with me ¼ 0 in Eq. (8) and ke ¼ EI ¼ ce ¼ 0 in Eqs. (9) and (10). While the discretized equations
for the models in Fig. 1(a) and (b) have the same form, the trial functions used satisfy different
boundary conditions. This also holds for the models in Fig. 2(a) and (b).
The eigenfunctions of a fixed–fixed beam and those of a fixed–fixed beam under uniform

tension T ¼ meg are used as the trial functions for the model in Fig. 1(a). The eigenfunctions of a
pinned–pinned beam, which are identical to those of a pinned–pinned beam under uniform
tension, are used as the trial functions for the model in Fig. 1(b). The eigenfunctions of a fixed–
fixed string, which are identical to those of a pinned–pinned beam, are used as the trial functions
for the model in Fig. 1(c). Due to the same trial functions the discretized equations for the model
in Fig. 1(c) can be obtained from those for the model in Fig. 1(b) by setting EI ¼ 0: The
eigenfunctions of a cantilever beam and those of a fixed–free beam under uniform tension T ¼
meg are used as the trial functions for the model in Fig. 2(a). The eigenfunctions of a pinned–free
beam and those of a pinned–free beam under uniform tension T ¼ meg are used as the trial
functions for the model in Fig. 2(b). The eigenfunctions of a fixed–free string are used as the trial
functions for the model in Fig. 2(c). Note that a pinned–free beam has a rigid-body mode and a
fixed–free string does not. The discretized equations for the model in Fig. 2(c) cannot be obtained
as a special case from those for the model in Fig. 2(b) due to the different trial functions used. All
the trial functions are normalized and given in Appendix A. By the orthogonality relations the
mass matrix for the models in Fig. 1 is a diagonal matrix. If the initial displacement and velocity
of the cable in Figs. 1 and 2 are given by yðx; 0Þ and ytðx; 0Þ; respectively, the initial conditions for
the generalized coordinates are

qjð0Þ ¼
Z l

0

fjðxÞyðx; 0Þ dx; ’qjð0Þ ¼
Z l

0

fjðxÞytðx; 0Þ dx: ð11Þ
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The energy of the models in Fig. 1(a) and (b) is

EvðtÞ ¼
1

2

Z l

0

ðry2t þ Py2x þ EIy2xxÞ dx ð12Þ

and that of the models in Fig. 2(a) and (b) is

EvðtÞ ¼
1

2

Z l

0

ðry2t þ Py2x þ EIy2xxÞ dx þ 1
2mey

2
t ðl; tÞ þ

1
2key

2ðl; tÞ: ð13Þ

The energy of the models in Figs. 1(c) and 2(c) is given by Eqs. (12) and (13), respectively, with
EI ¼ 0: Substituting Eq. (6) into Eqs. (12) and (13) yields the discretized energy expression for the
models in Figs. 1 and 2:

EvðtÞ ¼ 1
2
½’qTðtÞM’qðtÞ þ qTðtÞKqðtÞ�; ð14Þ

where M and K are the corresponding mass and stiffness matrices. Differentiating Eqs. (12) and
(13) and using the governing equations and boundary conditions yields ’EvðtÞ ¼ 0 for the models in
Fig. 1 and ’EvðtÞ ¼ �cey

2
t ðl; tÞ for the models in Fig. 2. The discretized expression of ’EvðtÞ for the

models in Fig. 2 is ’EvðtÞ ¼ �’qTðtÞC’qðtÞ:

2.2. Results and discussion

The parameters used here are similar to those in Refs. [21,22]: r ¼ 1:005 kg=m; EI ¼ 1:39 Nm2;
me ¼ 756 kg; g ¼ 9:81m=s2; l ¼ 171m; and ke ¼ 2083 N=m: The undamped natural frequencies,
oi; and modes, xi; of the system in Eq. (7) are obtained from the eigenvalue problem, Kxi ¼
o2i Mxi (i ¼ 1; 2;y; n). Using the aforementioned trial functions and various numbers of terms in
Eq. (6), the first three natural frequencies of the models in Figs. 1 and 2 are calculated as shown in
Table 1. The trial functions for the models in Figs. 1(a), and 2(a) and (b), corresponding to
T ¼ meg and T ¼ 0; are referred to as the tensioned and untensioned beam eigenfunctions,
respectively. As the natural frequencies converge from above, the use of the tensioned beam
eigenfunctions significantly accelerates the convergence of the natural frequencies of the model in
Fig. 1(a). The untensioned beam eigenfunctions yield improved estimates of the natural
frequencies of the models in Fig. 2(a) and (b) for n > 1: Due to the rotational constraints at the
fixed ends the natural frequencies of the models in Figs. 1(a) and 2(a) are slightly higher than
those of the models in Figs. 1(b) and 2(b), respectively. Due to small bending stiffness the natural
frequencies of the model in Fig. 1(b) are identical to those of the model in Fig. 1(c) within the
accuracy shown for all n: The natural frequencies of the models in Fig. 1(b) and (c) converge at
similar rates as the natural frequencies of the model in Fig. 1(a) using the tensioned beam
eigenfunctions. The natural frequencies of the model in Fig. 2(c) converge at similar rates as the
natural frequencies of the models in Fig. 2(a) and (b) using the tensioned beam eigenfunctions.
The natural frequencies of the models in Fig. 2 approach those of the corresponding models in
Fig. 1 when ke approaches infinity.
Consider the undamped (i.e., ce ¼ 0) responses of the models in Figs. 1 and 2 to the initial

displacements given in Appendix B and zero initial velocity. The initial displacement for the
models in Figs. 1(a) and 2(a) is the static deflection of a fixed–fixed beam under uniform tension
meg; subjected to a concentrated force at x ¼ a resulting in a displacement d at x ¼ a: The initial
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displacement for the models in Figs. 1(b) and 2(b) is the static deflection of a pinned–pinned beam
under the same tension, subjected to a concentrated force at x ¼ a resulting in a displacement d at
x ¼ a: The initial displacement for the models in Figs. 1(c) and 2(c) is the static deflection of a
fixed–fixed string subjected to a concentrated force at x ¼ a with a displacement d at x ¼ a: The
above initial displacements for a ¼ 100m and d ¼ 0:07 m are shown in Fig. 3; the resulting
displacements and velocities of a particle of the models in Figs. 1 and 2 at x ¼ 156m are shown in
Figs. 4 and 5, respectively, for 0ptptf ¼ 38 s; where tf is the final time of the moving cable in
Section 3.2. Note that the small bending stiffness leads to the boundary layers in the deflections of
the beams in the vicinity of the fixed ends and concentrated force to ensure satisfaction of the
boundary and internal conditions. Due to small bending stiffness the responses of the models in

Table 1

The first three natural frequencies (in rad/s) of the models in Figs. 1 and 2 calculated using different numbers of terms in

Eq. (6), where T is the tension of the beams whose eigenfunctions are used as the trial functions for the models in

Figs. 1(a), and 2(a) and (b)

Number of modes n 1 2 3 10 20 30 50 100 150

Fig. 1(a) T ¼ 0 1st 1.859 1.858 1.774 1.710 1.687 1.679 1.673 1.668 1.666

2nd 3.598 3.596 3.412 3.372 3.358 3.345 3.336 3.333

3rd 5.303 5.128 5.061 5.038 5.019 5.004 5.000

T ¼ meg 1st 1.666 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664

2nd 3.333 3.328 3.328 3.328 3.328 3.328 3.328 3.328

3rd 5.002 4.991 4.991 4.991 4.991 4.991 4.991

Fig. 1(b) 1st 1.665 1.663 1.663 1.663 1.663 1.663 1.663 1.663 1.663

2nd 3.332 3.327 3.327 3.327 3.327 3.327 3.327 3.327

3rd 5.000 4.990 4.990 4.990 4.990 4.990 4.990

Fig. 1(c) 1st 1.665 1.663 1.663 1.663 1.663 1.663 1.663 1.663 1.663

2nd 3.332 3.327 3.327 3.327 3.327 3.327 3.327 3.327

3rd 5.000 4.990 4.990 4.990 4.990 4.990 4.990

Fig. 2(a) T ¼ 0 1st 1.636 1.533 1.532 1.506 1.501 1.499 1.498 1.497 1.496

2nd 1.898 1.887 1.851 1.844 1.842 1.840 1.838 1.838

3rd 3.480 3.397 3.374 3.366 3.360 3.355 3.354

T ¼ meg 1st 1.596 1.559 1.539 1.510 1.503 1.500 1.499 1.497 1.497

2nd 1.986 1.917 1.857 1.847 1.844 1.841 1.839 1.838

3rd 3.671 3.424 3.387 3.375 3.365 3.358 3.356

Fig. 2(b) T ¼ 0 1st 1.619 1.509 1.498 1.496 1.496 1.496 1.496 1.496 1.496

2nd 1.840 1.837 1.837 1.837 1.837 1.837 1.837 1.837

3rd 3.398 3.351 3.351 3.351 3.351 3.351 3.351

T ¼ meg 1st 1.596 1.559 1.539 1.510 1.503 1.500 1.498 1.497 1.497

2nd 1.985 1.917 1.857 1.847 1.843 1.841 1.839 1.838

3rd 3.670 3.424 3.386 3.374 3.365 3.358 3.355

Fig. 2(c) 1st 1.596 1.559 1.539 1.510 1.503 1.500 1.498 1.497 1.497

2nd 1.985 1.917 1.857 1.847 1.843 1.841 1.839 1.838

3rd 3.670 3.424 3.386 3.374 3.365 3.358 3.355
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Figs. 1 and 2 are virtually indistinguishable within the scales of the plots in Figs. 4 and 5,
respectively. While the maximum displacement in Fig. 5 is larger than that in Fig. 4, the energies
shown by the horizontal lines in Figs. 11(a) and 12(a) are essentially the same. Convergence of the
responses of the various models is similar to that of the natural frequencies discussed earlier.
Under the above initial conditions the transverse force at the lower end (i.e., x ¼ l) of each

model in Fig. 1 is shown in Fig. 6(a). While the transverse force at x ¼ l is given by the shear force
�EIyxxxðl; tÞ for the model in Fig. 1(a) because yxðx; lÞ ¼ 0; by the transverse component of the
tension PðlÞyxðl; tÞ for the model in Fig. 1(c), and by both terms �EIyxxxðl; tÞ þ PðlÞyxðl; tÞ for the
model in Fig. 1(b), it has essentially the same value for the three models. The bending moment at
the lower end of the model in Fig. 1(a) is shown in Fig. 6(b); the bending moment at the two ends
of the model in Fig. 1(b) vanishes identically. The bending moment at an interior point (e.g.,
x ¼ 156m) of the models in Fig. 1(a) and (b) has an amplitude that is orders of magnitude smaller
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Fig. 3. The initial displacements for the models in: Figs. 1(a) and 2(a) (dashed lines); Figs. 1(b) and 2(b) (dots);

Figs. 1(c) and 2(c) (solid lines). The boundary layers are shown in dashed lines in the expanded views near the
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Fig. 1(c). The energies of the models are shown in Fig. 11(a). The tensioned beam eigenfunctions are used for the

response of the model in Fig. 1(a) and n ¼ 30 in all the cases.
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than those at the fixed ends of the model in Fig. 1(a). Only the tensioned beam eigenfunctions
can be used to estimate the bending moment and shear force at the fixed ends of the model in
Fig. 1(a); the untensioned beam eigenfunctions will lead to slowly convergent series for the higher
order derivatives, yxx and yxxx: Both the tensioned and untensioned beam eigenfunctions can be
used to determine the transverse force at an interior point of the model in Fig. 1(a) and any point
of the model in Fig. 1(b) because it is dominated by the transverse component of the tension,
which involves the first order derivative yx: The transverse force and bending moment are
related to the transverse and bending stresses, respectively, in the analysis of cumulative fatigue
damage.
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Fig. 5. The displacement (a) and velocity (b) of the particle at x ¼ 156 m in the models in Fig. 2 under the

corresponding initial displacements shown in Fig. 3: dashed lines, Fig. 2(a); dash-dotted lines, Fig. 2(b); solid lines,

Fig. 2(c). The energies of the models are shown in Fig. 12(a). The untensioned beam eigenfunctions are used for the

models in Fig. 2(a) and (b) and n ¼ 30 in all the cases.
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Under the above initial conditions the transverse force at the upper end (i.e., x ¼ 0) of each
model in Fig. 2 is shown in Fig. 7(a). Similar to the case in Fig. 6(a), the transverse force at x ¼ 0;
though given by different expressions, has essentially the same value for the three models. The
bending moment at the upper end of the model in Fig. 2(a) is shown in Fig. 7(b). Note that the
eigenfunctions of a fixed–free beam under uniform tension T ¼ meg þ rgl; which is the cable
tension at x ¼ 0; are used to calculate the shear force and bending moment at the upper end of the
model in Fig. 2(a). Both the tensioned and untensioned beam eigenfunctions can be used to
calculate the transverse force at an interior point of the model in Fig. 2(a) and any point of the
model in Fig. 2(b). Only the untensioned beam eigenfunctions can be used to determine the
transverse force at the lower end of the models in Fig. 2(a) and (b) because they satisfy a more
realistic boundary condition, EIyxxxðl; tÞ ¼ 0; than the tensioned beam eigenfunctions,
EIyxxxðl; tÞ ¼ Tyxðl; tÞ: The transverse force at the lower end of the model in Fig. 2(c) cannot be
determined here because the trial functions satisfy f0

jðlÞ ¼ 0:

3. Moving cable models

3.1. Basic equations

Shown in Figs. 8 and 9 are the six models of the moving hoist cable corresponding to the
stationary cable models in Figs. 1 and 2. During its motion the cable has a variable length lðtÞ and
an axial velocity vðtÞ ¼ ’lðtÞ: When the cable is modelled as a travelling tensioned beam, as shown
in Figs. 8(a) and (b), and 9(a) and (b), its free lateral vibration relative to the fixed coordinate
system, xy; is governed by [21]

r
D2yðx; tÞ
Dt2

� ½Pðx; tÞyxðx; tÞ�x þ EIyxxxxðx; tÞ ¼ 0; 0oxolðtÞ; ð15Þ
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Fig. 7. (a) The transverse force at the upper end of each model in Fig. 2 under the corresponding initial displacement

shown in Fig. 3: dashed lines, Fig. 2(a); dash–dotted lines, Fig. 2(b); solid lines, Fig. 2(c). (b) The bending moment at

the upper end of the model in Fig. 2(a). In all the cases n ¼ 100:
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where

D2

Dt2
¼

@2

@t2
þ 2vðtÞ

@2

@x @t
þ v2ðtÞ

@2

@x2
þ ’vðtÞ

@

@x
; ð16Þ

yðx; tÞ is the lateral displacement of the cable particle instantaneously located at position x at time
t; Pðx; tÞ is the tension given by

Pðx; tÞ ¼ ½me þ rðlðtÞ � xÞ�½g � ’vðtÞ�; ð17Þ

and the other variables are defined in Section 2.1. The governing equation for the models in
Figs. 8(c) and 9(c) is given by Eq. (15) with EI ¼ 0: The boundary conditions for each model in
Figs. 8 and 9 are given by those for the corresponding stationary cable model in Section 2.1 with l

Fig. 8. Schematic of the moving hoist cable with the suspension of the car against its guide rails assumed to be rigid:

(a)–(c) as in Fig. 1.

Fig. 9. Schematic of the moving hoist cable where the car is modelled as a point mass me and its suspension against the

guide rails has a resultant stiffness ke and damping coefficient ce: (a)–(c) as in Fig. 2.
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replaced with lðtÞ and PðlÞ; ytðl; tÞ and yttðl; tÞ in Eq. (5) replaced with PðlðtÞ; tÞ; DyðlðtÞ; tÞ=Dt and
D2yðlðtÞ; tÞ=Dt2; respectively, where D=Dt ¼ yt þ vðtÞyx and D

2=Dt2 is defined in Eq. (16). The
models in Figs. 8(c) and 9(c) cannot be obtained as a special case from the models in Figs. 8(a)
and 9(a), respectively. The mass of the car provides a tension meðg � ’vÞ and an inertial force in the
force boundary condition for the models in Fig. 9.
Galerkin’s method and the assumed modes method are modified to discretize the governing

partial equations for the models in Figs. 8 and 9, respectively. The solution of Eq. (15) is assumed
in the form

yðx; tÞ ¼
Xn

j¼1

qjðtÞfjðx; tÞ; ð18Þ

where fjðx; tÞ are the time-dependent trial functions and the other variables are defined in Section
2.1. Following Ref. [21] the instantaneous eigenfunctions of stationary beams and strings with
variable length lðtÞ are used as the trial functions for the models in Figs. 8 and 9. They satisfy the
same boundary conditions as the trial functions for the corresponding stationary cable models in
Section 2.1 and are normalized so that

R lðtÞ
0 f2j ðx; tÞ dx ¼ 1: Note that the trial functions for the

model in Fig. 9(b) contain a rigid-body mode. Because the trial functions for each model can be
expressed as [21,22]

fjðx; tÞ ¼
1ffiffiffiffiffiffiffi
lðtÞ

p cjðxÞ; ð19Þ

where x ¼ x=lðtÞ and cjðxÞ; given in Appendix A, are the normalized eigenfunctions of the
corresponding stationary beam or string with unit length, dependence of the system matrices in
Eq. (20) on time appears in the coefficient of their component matrices, which greatly simplifies
the analysis. The normalized, instantaneous eigenfunctions of the tensioned beams with variable
length lðtÞ cannot be decomposed in the same manner as Eq. (19) and are not used as the trial
functions for the models in Figs. 8(a), and 9(a) and (b). Substituting Eqs. (18) and (19) into
Eq. (15) and the force boundary condition at x ¼ lðtÞ; multiplying the governing equation by
ciðxÞ=

ffiffiffiffiffiffiffi
lðtÞ

p
; integrating it from x ¼ 0 to lðtÞ; and using the resulting boundary condition and

the orthonormality relations for cjðxÞ yields the discretized equations for the models in Fig. 9(a)
and (b):

MðtÞ.qðtÞ þ ½CðtÞ þGðtÞ�’qðtÞ þ ½KðtÞ þHðtÞ�qðtÞ ¼ 0; ð20Þ

where entries of the symmetric mass, stiffness, and damping matrices are

Mij ¼ rdij þ mel
�1ðtÞcið1Þcjð1Þ; ð21Þ

Kij ¼ 1
4
rl�2ðtÞ’l2ðtÞdij � rl�2ðtÞ’l2ðtÞ

Z 1

0

ð1� xÞ2c0
iðxÞc

0
jðxÞ dxþ rl�1ðtÞ½g � .lðtÞ�

Z 1

0

ð1� xÞc0
iðxÞc

0
jðxÞ dx

þ mel
�2ðtÞ½g � .lðtÞ�

Z 1

0

c0
iðxÞc

0
jðxÞ dxþ EIl�4ðtÞ

Z 1

0

c00
i ðxÞc

00
j ðxÞ dx

þ ½me
3
4
’l2ðtÞl�3ðtÞ � 1

2
.lðtÞl�2ðtÞ

� �
� 1
2
cel

�2ðtÞ’lðtÞ þ kel
�1ðtÞ�cið1Þcjð1Þ; ð22Þ
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Cij ¼ cel
�1ðtÞcið1Þcjð1Þ � mel

�2ðtÞ’lðtÞcið1Þcjð1Þ; ð23Þ

in which dij is the Kronecker delta, and entries of the skew-symmetric gyroscopic and circulatory
matrices are

Gij ¼ rl�1ðtÞ’lðtÞ 2
Z 1

0

ð1� xÞciðxÞc
0
jðxÞ dx� dij

� 	
; ð24Þ

Hij ¼ r½l�2ðtÞ’l2ðtÞ � l�1ðtÞ.lðtÞ� 1
2
dij �

Z 1

0

ð1� xÞciðxÞc
0
jðxÞ dx

� 	
: ð25Þ

The discretized equations for the model in Fig. 9(c) are given by Eqs. (20)–(25) with EI ¼ 0 in
Eq. (22). The discretized equations for the models in Fig. 8(a) and (b) are given by Eqs. (20)–(25)
with me ¼ 0 in Eq. (21), the last term involving cið1Þcjð1Þ in Eq. (22) set to zero, and ce ¼ me ¼ 0
in Eq. (23). The discretized equations for the model in Fig. 8(c) are given by those for the models
in Fig. 8(a) and (b) with EI ¼ 0 in the entries of K: The discretized equations for the model in
Fig. 8(c) can be obtained from those for the model in Fig. 8(b) by setting EI ¼ 0; the discretized
equations for the model in Fig. 9(c) cannot be obtained as a special case from those for the model
in Fig. 9(b). If the initial displacement and velocity of the cable in Figs. 8 and 9 are given by yðx; 0Þ
and ytðx; 0Þ; respectively, where 0oxolð0Þ; the initial conditions for the generalized coordinates
are

qjð0Þ ¼
ffiffiffiffiffiffiffiffi
lð0Þ

p Z 1

0

yðxlð0Þ; 0ÞcjðxÞ dx; ð26Þ

’qjð0Þ ¼
ffiffiffiffiffiffiffiffi
lð0Þ

p Z 1

0

ytðxlð0Þ; 0ÞcjðxÞ dxþ
vð0Þ
lð0Þ

Xn

i¼1

qið0Þ
Z 1

0

xc0
iðxÞcjðxÞ dxþ

vð0Þ
2lð0Þ

qjð0Þ: ð27Þ

The vibratory energy of the models in Fig. 8(a) and (b) is

EvðtÞ ¼ 1
2

Z lðtÞ

0

½rðyt þ vyxÞ
2 þ Py2x þ EIy2xx� dx ð28Þ

and that of the models in Fig. 9(a) and (b) is

EvðtÞ ¼ 1
2

Z lðtÞ

0

½rðyt þ vyxÞ
2 þ Py2x þ EIy2xx� dx

þ 1
2

me ytðlðtÞ; tÞ þ vyxðlðtÞ; tÞ½ �2þ1
2
key

2ðlðtÞ; tÞ: ð29Þ

The vibratory energy of the models in Figs. 8(c) and 9(c) is given by Eqs. (28) and (29),
respectively, with EI ¼ 0: Substituting Eqs. (18) and (19) into Eq. (28) yields the discretized
expression of the vibratory energy of the models in Fig. 9(a) and (b):

EvðtÞ ¼ 1
2
½’qTðtÞMðtÞ’qðtÞ þ ’qTðtÞRðtÞ’qðtÞ þ qTðtÞSðtÞqðtÞ�; ð30Þ
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where entries of M are given by Eq. (21)

Rij ¼ �rl�1ðtÞ’lðtÞdij þ 2rl�1ðtÞ’lðtÞ
Z 1

0

ð1� xÞciðxÞcjðxÞ dx� mel
�2ðtÞ’lðtÞcið1Þcjð1Þ; ð31Þ

Sij ¼ r �1
4
l�2ðtÞ’l2ðtÞdij þ ’l2ðtÞl�2ðtÞ

Z 1

0

ð1� xÞ2c0
iðxÞc

0
jðxÞ dx




þ l�1ðtÞ½g � .lðtÞ�
Z 1

0

ð1� xÞc0
iðxÞc

0
jðxÞ dx

�

þ kel
�1ðtÞcið1Þcjð1Þ þ EIl�4ðtÞ

Z 1

0

c00
i ðxÞc00

j ðxÞ dx

þ mel
�2ðtÞ½g � .lðtÞ�

Z 1

0

c0
iðxÞc

0
jðxÞ dxþ

1
4mel

�1ðtÞ’l2ðtÞcið1Þcjð1Þ: ð32Þ

The discretized expression of EvðtÞ for the model in Fig. 9(c) is given by Eqs. (30)–(32) with EI ¼ 0
in Eq. (32). The discretized expression of EvðtÞ for the models in Fig. 8(a) and (b) is given by
Eqs. (30)–(32) with me ¼ 0 in the entries ofM and Eq. (31) and with the last term in Eq. (32) set to
zero. The discretized expression of EvðtÞ for the model in Fig. 8(c) is given by the discretized
expression of EvðtÞ for the model in Fig. 8(b) with EI ¼ 0 in the entries of S: The rate of change of
the vibratory energy of each model in Figs. 8 and 9 can be calculated from the control volume and
system viewpoints following Refs. [21,23]. The rate of change of EvðtÞ from the control volume
viewpoint can characterize the dynamic stability of the system under consideration and is
obtained by differentiating EvðtÞ using Leibnitz’s rule. It is given by

’EvðtÞ ¼ �
vðtÞ
2

EIy2xxð0; tÞ �
1
2 .vðtÞ

Z lðtÞ

0

½me þ rðlðtÞ � xÞ�y2x dx

� ce ytðlðtÞ; tÞ þ vðtÞyxðlðtÞ; tÞ½ �2 ð33Þ

for the model in Fig. 9(a) and by

’EvðtÞ ¼ �
vðtÞ
2
½Pð0; tÞ � rv2ðtÞ�y2xð0; tÞ þ EIvðtÞyxð0; tÞyxxxð0; tÞ

� 1
2.vðtÞ

Z lðtÞ

0

½me þ rðlðtÞ � xÞ�y2x dx � ce ytðlðtÞ; tÞ þ vðtÞyxðlðtÞ; tÞ½ �2 ð34Þ

for the model in Fig. 9(b). Similarly, ’EvðtÞ for the model in Fig. 9(c) is given by Eq. (34) with
EI ¼ 0 and ’EvðtÞ for each model in Fig. 8 is given by that for the corresponding model in Fig. 9
with ce ¼ 0: The discretized expression of ’EvðtÞ is

’EvðtÞ ¼ 1
2
½’qTðtÞFðtÞ’qðtÞ þ ’qTðtÞUðtÞqðtÞ þ qTðtÞWðtÞqðtÞ�; ð35Þ
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where

Fij ¼ �cel
�1ðtÞcið1Þcjð1Þ; Uij ¼ cel

�2ðtÞ’lðtÞcið1Þcjð1Þ ð36Þ

for the models in Fig. 9, Fij ¼ Uij ¼ 0 for the models in Fig. 8,

Wij ¼ 1
2
rl�1ðtÞ.vðtÞ

Z 1

0

xc0
iðxÞc

0
jðxÞ dx�

1
2
½me þ rlðtÞ�l�2ðtÞ.vðtÞ

Z 1

0

c0
iðxÞc

0
jðxÞ dx

� 1
4 cel

�3ðtÞ’l2ðtÞcið1Þcjð1Þ þ EIl�5ðtÞ’lðtÞc0
ið0Þc

000
j ð0Þ

� 1
2
l�3ðtÞ’lðtÞf½me þ rlðtÞ�½g � .lðtÞ� � r’l2ðtÞgc0

ið0Þc
0
jð0Þ ð37Þ

for the model in Fig. 9(b),Wij for the model in Fig. 9(c) is given by Eq. (37) with EI ¼ 0; Wij for
the model in Fig. 9(a) is given by Eq. (37) with the last two terms replaced with
�1
2
EIl�5ðtÞ’lðtÞc00

i ð0Þc
00
j ð0Þ; and Wij for each model in Fig. 8 is given by that for the corresponding

model in Fig. 9 with ce ¼ 0:

3.2. Results and discussion

The parameters used here are the same as those in Section 2.2. Under the upward movement
profile shown in Fig. 10 [23], where lð0Þ equals l in Section 2.2, and the same initial conditions as
those for the corresponding stationary cable models, the undamped (i.e., ce ¼ 0) responses of the
models in Figs. 8 and 9 are calculated with n ¼ 30 and shown in Figs. 11 and 12, respectively. The
responses of the models in Figs. 8 and 9 are virtually indistinguishable within the scales of the
plots in Figs. 11 and 12, respectively. The vibratory energies of the models in Fig. 9 are smaller
than those of the models in Fig. 8 and approach them when ke approaches infinity (e.g.,
ke ¼ 200; 000N=m).
The transverse force at any point other than the fixed ends of the models in Figs. 8(a) and 9(a)

and the lower end of the model in Fig. 9(c) can be calculated. The discretized expression of ’EvðtÞ
for the model in Fig. 8(c) yield essentially the same result as that obtained from EvðtÞ through
finite difference (not shown). The discretized expressions of ’EvðtÞ for the models in Figs. 8(a) and
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Fig. 10. Upward movement profile of the hoist cable: (a) lðtÞ; (b) vðtÞ; (c) .lðtÞ; and (d) .vðtÞ:
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optimal suspension stiffness and damping coefficient: (a)–(c) as in Fig. 11. The horizontal lines in (a) show the energies
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9(a) cannot be used here because y2xxð0; tÞ cannot be determined with the untensioned beam
eigenfunctions. As the second term in Eq. (34) has a much smaller amplitude than the first term,
the discretized expressions of ’EvðtÞ for the models in Figs. 8(b) and 9(b) yield essentially the same
results as those obtained from the corresponding EvðtÞ through finite difference. While the
discretized expression of ’EvðtÞ for the model in Fig. 9(c) can be used when ce ¼ 0; it cannot
be used when cea0 because yxðlðtÞ; tÞ cannot be determined with the trial functions satisfying
fjxðlðtÞ; tÞ ¼ 0:
Under the above initial conditions and movement profile the dependence of the average

vibratory energy of the model in Fig. 9(a), defined by %Ev ¼ 1=tf

� � R tf

0 EvðtÞ dt; where tf ¼ 38 s; on
ke and ce with the other parameters unchanged is shown in Fig. 13. With the optimal suspension
stiffness and damping coefficient around k�

e ¼ 2800 N=m and c�e ¼ 280N s=m; respectively, %Ev is
reduced from 1:22 J for the models in Fig. 8 to 0:33 J: The response of the model in Fig. 9(a)
under k�

e and c�e is shown in thin solid lines in Fig. 12. The optimal suspension stiffness and
damping coefficient are generally independent of the initial conditions. It is interesting to find that
the vibratory energy of the models in Fig. 9 with ke ¼ ce ¼ 0 is essentially the same as that of the
models in Fig. 8.

4. Conclusions

While the string and beam models predict essentially the same gross behaviors for the
stationary and moving hoist cables, the maximum bending moment occurs at the fixed ends of the
beam models. The untensioned beam eigenfunctions cannot be used here to determine yxx and
yxxx at the fixed ends of the beam models. With the optimal suspension stiffness and damping
coefficient the average vibratory energy of the models in Fig. 9 during upward movement is
reduced from that of the models in Fig. 8 by over 70%.
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In all the calculations n ¼ 30:

W.D. Zhu, G.Y. Xu / Journal of Sound and Vibration 263 (2003) 679–699694



Acknowledgements

This material is based on work supported by the National Science Foundation through award
number CMS-0116425.

Appendix A. Trial functions

The eigenfunctions of a fixed–fixed beam of length l under uniform tension T are

fjðxÞ ¼Bjfcos b1jx �
sj

gj

sin b1jx �
1

gj

½ðb2j sin b1j l � b1j cos b1j lÞe
b2jðx�lÞ

þ ðb2j sin b1j l þ b1j cos b1j lÞe
�b2jðxþlÞ � b1jðe

�b2jx � e�b2jð2l�xÞÞ�g; ðA:1Þ

where Bj are determined from the normalization relations
R l

0 f
2
j ðxÞ dx ¼ 1;

gj ¼ 2b2je
�b2j l sin b1j l � b1jð1� e

�2b2j lÞ; sj ¼ 2b2je
�b2j l cos b1j l � b2jð1þ e

�2b2j lÞ; ðA:2Þ

b1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 4EIrO2j

q
� T

2EI

vuut
; b2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 4EIrO2j

q
þ T

2EI

vuut
; ðA:3Þ

in which Oj are obtained from the frequency equation

4b1jb2j e
�b2j l � 2b1jb2j ð1þ e

�2b2j lÞ cos b1j l þ ðb22j � b21jÞ ð1� e
�2b2j lÞ sin b1j l ¼ 0: ðA:4Þ

When T ¼ 0; b1j ¼ b2j ¼ bj with bj l being the jth positive root zj of

2e�zj � ð1þ e�2zj Þcos zj ¼ 0: ðA:5Þ

The trial functions for the models in Fig. 1(b) and (c) are fjðxÞ ¼
ffiffiffiffiffiffiffi
2=l

p
sinðjpx=lÞ:

The eigenfunctions of a fixed–free beam of length l under uniform tension T are

fjðxÞ ¼Bjfcos b1jx �
sj

gj

sin b1jx þ
1

gj

½b21jðcos b1j l � sin b1j lÞe
b2jðx�lÞ

� b21jðcos b1j l þ sin b1j lÞe
�b2jðxþlÞ � b22jðe

�b2jx � e�b2jð2l�xÞÞ�g; ðA:6Þ

where Bj are determined through normalization,

gj ¼ 2b
2
1je

�b2i l sin b1il þ b22ið1� e
�2b2i lÞ; sj ¼ 2b

2
1je

�b2j l cos b1j l þ b22jð1þ e
�2b2i lÞ; ðA:7Þ

and b1j and b2j are defined in Eq. (A.3) with Oj obtained from the frequency equation

2e�b2j l ½b31jðT þ EIb21jÞ � b32jðT � EIb22jÞ� þ ½Tðb2j � b1jÞ þ EIb1jb2jðb2j þ b1jÞ�ð1þ e
�2b2j lÞ

� b1jb2j cos b1j l þ ½Tðb1j þ b2jÞ þ EIb1jb2jðb1j � b2jÞ�ð1� e
�2b2j lÞb1jb2j sin b1j l ¼ 0: ðA:8Þ

When T ¼ 0; b1j ¼ b2j ¼ bj with bj l being the jth positive root zj of

2e�zj þ ð1þ e�2zj Þ cos zj ¼ 0: ðA:9Þ
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The eigenfunctions of a pinned–free beam of length l under uniform tension T are

fjðxÞ ¼ Bj sin b1jx þ
b21j sin b1j l

b22jð1� e
�2b2j lÞ

½eb2jðx�lÞ � e�b2jðxþlÞ�

( )
; ðA:10Þ

where Bj are determined through normalization and b1j and b2j are defined in Eq. (A.3) with Oj

obtained from the frequency equation

b1jðT � EIb22jÞð1þ e
�2b2j lÞ sin b1j l þ b2jðT þ EIb21jÞð1� e

�2b2j lÞcos b1j l ¼ 0: ðA:11Þ

When T ¼ 0; fjðxÞ for jX2 are given by Eq. (A.1), where b1j ¼ b2j ¼ bj with bj l being the
(j � 1)th positive root zj�1 of

ð1� e�2zj Þcos zj � ð1þ e�2zj Þsin zj ¼ 0: ðA:12Þ

The normalized eigenfunction for the rigid-body mode is f1ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
3=l3

p
x: The trial functions for

the model in Fig. 2(c) are fjðxÞ ¼
ffiffiffiffiffiffiffi
2=l

p
sin½ð2j � 1Þpx=2l�:

The functions cjðxÞ for the model in Fig. 8(a) are

cjðxÞ ¼Bjfcos kjpx�
yj

lj

sin kjpx�
1

lj

½e�kjpð1�xÞðsin kjp� cos kjpÞ

þ e�kjpð1þxÞðsin kjpþ cos kjpÞ � e�kjpx þ e�kjpð2�xÞ�g; ðA:13Þ

where kjp is the jth positive root zj of Eq. (A.5) and

lj ¼ 2e�kjp sin kjp� 1þ e�2kjp; yj ¼ 2e�kjp cos kjp� 1� e�2kjp: ðA:14Þ

The functions cjðxÞ for the model in Fig. 9(a) are

cjðxÞ ¼Bjfcos kjpx�
yj

lj

sin kjpx�
1

lj

½e�kjpð1�xÞðsin kjp� cos kjpÞ

þ e�kjpð1þxÞðsin kjpþ cos kjpÞ þ e�kjpx � e�kjpð2�xÞ�g; ðA:15Þ

where kjp is the jth positive root zj of Eq. (A.9) and

lj ¼ 2e�kjp sin kjpþ 1� e�2kjp; yj ¼ 2e�kjp cos kjpþ 1þ e�2kjp: ðA:16Þ

The constants Bj in Eqs. (A.13) and (A.15) are both expressed as

Bj ¼
ffiffiffiffiffiffiffi
kjp

p
1þ

yj

lj

� �2" #
1
4
sinh 2kjp� cosh kjp sin kjp

� �
þ 1�

yj

lj

� �2" #
1
4
sin 2kjp

�(

�sinh kjp cos kjp
�
þkjpþ 2

yj

lj

1
4ðcos 2kjp� cosh 2kjpÞ þ sin kjp sinh kjp
� ���1=2

: ðA:17Þ

Calculation shows that Bj ¼ 1: The functions cjðxÞðjX2Þ for the model in Fig. 9(b) are

cjðxÞ ¼ Bjfsin kjpxþ
sin kjp
1� e�2kjp

½ekjpðx�1Þ � e�kjpðxþ1Þ�g; ðA:18Þ

where kjp is the (j � 1)th positive root zj�1 of Eq. (A.12) and

Bj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� e�2kjpÞ2

ð1� e�2kjpÞ2 � 4e�2kjp sin2 kjp

s
: ðA:19Þ
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The associated function for the rigid-body mode is c1ðxÞ ¼
ffiffiffi
3

p
x: For the models in Fig. 8(b) and

(c), cjðxÞ ¼
ffiffiffi
2

p
sin pjx; and for the model in Fig. 9(c), cjðxÞ ¼

ffiffiffi
2

p
sin ½ð2j � 1Þpx=2�: Since a large

number of terms are used in Eqs. (6) and (18), to avoid loss of precision in evaluating the
hyperbolic functions with large arguments, the trial functions are expressed above as exponential
functions with negative exponents.

Appendix B. Initial displacements

The static deflection of a fixed–fixed beam of length l under uniform tension meg; subjected to a
concentrated force P at x ¼ a; is

Y ðxÞ ¼
A1 þ N1x þ Q1ðxÞ; 0oxoa;

A2 þ N2x þ Q2ðxÞ; aoxol;

(
ðB:1Þ

where

A1 ¼ a½�2sae�sl þ slðe�sa þ e�2slþsaÞ � ðe�sa � e�2slþsaÞ þ 1� esa�sl

� e�2sl þ e�sa�sl � sðl � aÞð1þ e�2slÞ�;

N1 ¼ as½2e�sl � e�sa � e�2slþsa þ sðl � aÞð1� e�2slÞ � 1� e�2sl þ esa�sl þ e�sa�sl �;

Q1ðxÞ ¼ a½�ð1� saÞe�slþsx þ e�saþsx � 0:5slðe�saþsx þ e�2slþsaþsxÞ

þe�2slþsx � e�sa�slþsx þ sðl � aÞe�2slþsx þ sae�sl�sx � 0:5sle�sa�sx

þ ð1:5sl � 1Þe�2slþsa�sx � e�sx þ sðl � aÞe�sx�; ðB:2Þ

A2 ¼ a½slðe�sa þ e�2slþsaÞ � e�sa þ e�2slþsa � sðl þ aÞð1þ e�2slÞ þ ðs2la þ 1Þð1� e�2slÞ

� esa�sl � e�sa�sl þ 2sae�sl �;

N2 ¼ as½�e�sa � e�2slþsa þ 1þ e�2sl þ esa�sl þ e�sa�sl � sað1� e�2slÞ � 2e�sl �;

Q2ðxÞ ¼ a½e�sa�slþsx þ e�2slþsx � e�slþsx þ sae�slþsx � 0:5sle�2slþsaþsx � ð1þ 0:5slÞe�sa�2slþsx

þ sðl � aÞe�2slþsx � esa�sl�sx � e�sx þ e�sl�sx þ sae�sl�sx � 0:5sle�sa�sx

� ð0:5sl � 1Þesa�sx þ sðl � aÞe�sx�; ðB:3Þ

in which

s ¼

ffiffiffiffiffiffiffiffi
meg

EI

r
; a ¼

P

EIs3½4e�sl � 2ð1þ e�2slÞ þ slð1� e�2slÞ�
: ðB:4Þ

The static deflection of a pinned–pinned beam of length l under uniform tension meg; subjected to
a concentrated force P at x ¼ a; is given by Eq. (B.1) with

A1 ¼ 0; N1 ¼
Pðl � aÞ

EIs2l
;
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Q1ðxÞ ¼
P

2EIs3ð�1þ e�2slÞ
ðe�saþsx þ e�2slþsaþsx � e�sa�sx � e�2slþsa�sxÞ; ðB:5Þ

A2 ¼
Pa

EIs2
; N2 ¼ �

Pa

EIs2l
;

Q2ðxÞ ¼
P

2EIs3ð�1þ e�2slÞ
ðe�2slþsaþsx þ e�sa�2slþsx � esa�sx þ e�sa�sxÞ: ðB:6Þ

Under a unit force (i.e., p ¼ 1) at x ¼ a the displacement at the same point, denoted by Yf and Yp

for the two cases, can be calculated from the above expressions. The initial displacement for the
models in Figs. 1(a) and 2(a) is given by Eqs. (B.1)–(B.3) with P ¼ d=Yf and that for the models in
Figs. 2(a) and 2(b) is given by Eqs. (B.1), (B.5) and (B.6) with P ¼ d=Yp: The initial displacement
for the models in Figs. 1(c) and 2(c) is

yðx; 0Þ ¼

xd

a
; 0pxpa;

ðl � xÞd
l � a

; apxpl:

8>><
>>: ðB:7Þ
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